If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6c^2+63c-72=0
a = 6; b = 63; c = -72;
Δ = b2-4ac
Δ = 632-4·6·(-72)
Δ = 5697
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5697}=\sqrt{9*633}=\sqrt{9}*\sqrt{633}=3\sqrt{633}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-3\sqrt{633}}{2*6}=\frac{-63-3\sqrt{633}}{12} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+3\sqrt{633}}{2*6}=\frac{-63+3\sqrt{633}}{12} $
| 7x-4x=28 | | 6x+54+15x+63=180 | | 4c-10=10 | | 8-2u-10u=-10-10u | | X^2-4x=3x-8 | | -4(7-6x)=-14 | | 8-2u-10u=-10-10 | | Y=5/4x+61 | | 14+4x/6=8x | | -3(4-3n)+3(2+3n)=12 | | 2f-18=-2 | | 10k+25=2k+17 | | -4(7-6x)=14 | | 2.5(2+5)=5p+12.5 | | 10-4k=-10-8k | | 11x-60+6x+19=180 | | 2x+15=5x6 | | -2b+12(b-4)=8(-12b-6) | | 1/10.41=48/x | | 2x+15=56 | | x+(x+42)=156 | | 2.1=f-7.6 | | 12x-43/11=13 | | 2/3(6-9x=16 | | 5x^2+33x+54=0 | | -1/4(2x-4=-4 | | (10+v)/9=-1 | | -(3-k)-2(1-k)=-5 | | 2t-10=8 | | 2x+15=5/6 | | 119+(4x)=180 | | 8x+23=6x+39 |